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Abstract: - In this paper we investigate on set of activities presented via temporal stochastic automata, 

partitions of activities based on level based events, in this connection our investigation on issues with activity creations 
on temporal multi-activity graph in order to address this issues as our proposed system how system used PASS 
architecture with various implementation parts with that coordinates computations across nodes in the cluster and also 
shown that this algorithms enables to handle both large numbers of observations per second as well as large merged 
graphs. And also shown Partitioning times vs. TMAG size for different partitioning schemes and TMAG densities (sparse-
S, dense-D), averaged over number of compute nodes. 
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1. INTRODUCTION 

 In this paper, Given a set A of activities expressed via 

temporal stochastic automata, and a set O of 

observations (detections of low level events), Hidden 

Markov Models and Dynamic Bayesian Networks have 

been used extensively for representing activities [4]–[7]. 

A slight variant of these methods, stochastic automata, 

was used to represent activities in [3] and subsequently, 

a slight extension called Temporal Stochastic Automata 

was introduced [2], [8] showing that multiple stochastic 

automata can be merged together to recognize 

activities. We study the problem of identifying 

instances of activities from A in O. While past work has 

developed algorithms to solve this problem, in this 

paper, we develop methods to significantly scale these 

algorithms. Our PASS architecture consists of three 

parts: (i) leveraging past work to represent all activities 

in A via a single “merged” graph, (ii) partitioning the 

graph into a set of C sub graphs, where (C + 1) is the 

number of compute nodes in a cluster, and (iii) 

developing a parallel activity detection algorithm that 

uses a different compute node in the cluster to 

intensively process each sub graph. We propose three 

possible partitioning methods and a parallel activity-

search detection (PASS Detect) algorithm that 

coordinates computations across nodes in the cluster. 

We report on experiments showing that our algorithms 

enable us to handle both large numbers of observations 

per second as well as large merged graphs. In 

particular, on a cluster with 9 compute nodes, PASS can 

reliably handle between 400K and 569K observations 

per second and merged graphs with as many as 50K 

vertices. 

 

2. RELATED GROUND WORK 
 

Hidden Markov Models (HMMs) and their variants 

have been used extensively in the past to model 

activities. Duong et al. [5] introduce the Switching 

Hidden Semi-Markov Model, a two-layered extension 
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of the Hidden Semi-Markov Model (HSMM). The 

bottom layer represents atomic events and their 

duration using HSMMs, while the top layer represents 

high-level activities in terms of atomic events. A survey 

of temporal concepts and data models used in 

unsupervised pattern mining from symbolic temporal 

data is presented in [14]. Automatic learning of 

transition probabilities in activity models is discussed 

in [15]. Finally, dynamic Bayesian networks [7] and 

Petri nets can also be used for tracking multi-agent 

activities. A probabilistic extension of Petri nets for 

activity detection is proposed in [16]. Context free 

grammars have also been used to define activities [17]. 

HMMs and their variants are the models more closely 

related to the temporal stochastic automata used in this 

paper, but our performance results significantly 

improve upon past work. Limitations of traditional 

database management systems in supporting 

streaming applications and event processing have 

prompted extensive research in Data Stream 

Management Systems (DSMS). An early yet 

comprehensive survey of relevant issues in data stream 

management was presented in [18]. Amongst the 

several systems resulting from research efforts in this 

direction, of particular relevance is TelegraphCQ [19], a 

streaming query processor that filters, categorizes, and 

aggregates flow records according to one or more CQL 

[20] continuous queries, generating periodic reports. 

Differently from traditional queries on static data 

collections, results of continuous queries on streaming 

data need to be periodically and incrementally updated 

as new data is received. A significant portion of 

research in this area has been devoted to optimization 

of continuous queries [21]. Other works target the 

recognition of events based on streams of possibly 

uncertain data [22]. Although the system we propose in 

this paper operates on streams of observation data, the 

scope of our work is drastically different from the 

scope of DSMSs. In fact, we are not interested in 

retrieving a set of data items satisfying (exactly) certain 

conditions and keeping this set up to date as new data 

items are received. Instead, we are interested in finding 

sets of records such that, with a probability above a 

given threshold, the records in each set together 

constitute the “evidence” that a given activity occurred 

in a specific time interval. Additionally, we want to 

track partially completed activity occurrences. To the 

best of our knowledge, DSMSs do not provide support 

for this type of probabilistic inference. Moreover, there 

has been limited work on efficient indexing to support 

probabilistic activity recognition. The aim of past work 

on indexing of activities was specialized to very 

specific activities as opposed to the very general 

temporal stochastic automaton based approach that we 

build on top of in this paper. For instance, Ben-Arie et 

al. [23] use multidimensional index structures to store 

body pose vectors in video frames. Kerkez [24] 

develops indexes for casebased plan recognition where 

knowledge about planning situations enables the 

recognizer to focus on a subset of the plan library 

containing relevant past plans. A two-level indexing 

scheme, along with incremental construction of the 

plan libraries, is proposed to reduce the retrieval efforts 

of the recognizer. In short, past work does not address 

the issue of indexing observations to find activity 

instances, and these indexing approaches do not 

account for uncertainty in what defines an activity. 

Most importantly, none of them is targeted to 

distributed scenarios when multiple compute machines 

are available over a network. 

 

3. SYSTEM STUDY: 
 
3.1. Presented System: 
In this paper, we address the difficulty of scalable 

identifying instances of known activities (i.e., where 

activity models are known to the application 

developers such as in the cases listed above) in a high 

throughput stream of observations. We assume that 

activities are expressed as temporal stochastic (TS) 

automata, following the framework of [2] and its 

predecessor [3]. In particular, [2] took a set of known 

activity models expressed as temporal stochastic 

automata and merged them into a single graph and 

then proposed an algorithm to track activities in 

observation streams consisting of up to 28.5K 

observations per second on merged graphs consisting 

of fewer than 1000 vertices. 

Real time applications::  

1. Fraud in call data records 

2. Online market place looks for fraudulent transaction 

in web transactions logs  

3. Future situations of brokerage house 

 
Pitfalls of Presented system:  

1. It does not detect all fraud transactions 

efficiently. 

2. Its provide the reliable solution 

 
3.2. Proposed System:  
 
In order to achieve this, in our PASS system we adopt a 

three-pronged approach illustrated in. We assume that 
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we start with an initially given set A of activities 

expressed as temporal stochastic automata.  

 

Step1: In the very first step, shown in Fig. 1 with a 1 in 

a circle, we merge all of the activities in A into a single 

temporal multi-activity graph (TMAG). A TMAG 

captures all states and transitions present in any of the 

activities in A. TMAGs were first proposed in [2] which 

showed that merging graphs allowed multiple 

automata to be processed efficiently.  

 

Step2: PASS implements activity detection on a 

compute cluster consisting of (C + 1) compute nodes or 

processors. What we try to do in the second step, 

shown in Fig. 1 with a 2 in a circle, is to partition the 

TMAG into C sub graphs. The idea is that one 

processor is used as a submit node and the remaining 

C processors are each assigned one of the sub graphs 

generated by partitioning. Splitting the TMAG allows 

us to scale the number of activities we can process as 

well as improves our processing time by using a 

compute cluster. Each component of the TMAG 

resulting from the split can be processed on an 

individual compute node in the cluster. We present 

three ways to partition a TMAG. The Minimal Overlap 

Partitioning (MOP) algorithm splits the TMAG by 

assigning to each vertex a “temporal extent”. 

Intuitively, the temporal extent captures the period of 

time when the vertex can be active after the start of any 

activity in which that vertex is present. The intuition 

underlying minimal overlap partitioning is that if two 

vertices in a TMAG have similar temporal extents, then 

we should assign them to the same compute node. The 

Temporal Incidence Partitioning (TIP) method 

associates an “incidence” measure with any time 

interval. This incidence measure intuitively measures 

the number of vertices that can be active within a time 

interval. Some vertices, for instance, may occur at 

different time slices in different activities and as such, 

may have very wide time intervals. However, even 

with a very large temporal extent, the vertex may only 

be active infrequently within that temporal extent. TIP 

tries to split TMAGs by minimizing the standard 

deviation of these incidence measures. The Occurrence 

Probability Partitioning (OPP) algorithm transforms 

the TMAG into a weighted graph where the weights 

are learned by looking at actual observation 

(automaton state) streams to understand the true 

probability that one observation is seen after another 

observation. The idea is that if two observations occur 

consecutively very often within the real stream of 

observations being monitored, then these two 

observations often need to be processed very shortly 

after one another and hence, the corresponding two 

TMAG vertices should stay on the same compute node. 

OPP therefore weights edges in the TMAG using these 

co-occurrence probabilities and then partitions the 

TMAG using edge cuts after pruning away edges with 

very low weights. 

 

Step 3: once the set A of activities we wish to detect are 

merged together into a TMAG and the resulting TMAG 

is partitioned across C different compute nodes, we are 

ready to process an observation stream and identify 

instances of the activities in A in the observation 

stream. To achieve this requires the core run-time 

component of the PASS system, shown in Step 3 (circle 

with a 3 embedded in it) in Fig. 1. The Activity-Search 

Engine automatically processes the observation stream 

using a decentralized algorithm that allows multiple 

nodes to concurrently process different portions of the 

observation stream with seamless handoffs occurring 

as needed from one compute node to another. 

Advantages:  

 Detect the frauds in different number of 

applications 

 Reliable detection of all number frauds  

 Quick detection is also possible here using the 

parallel activity search system 
 

 SYSTEM ARCHITECTURE:  
  

 
Fig 1. PASS architecture 

 
4.1. PASS SYSTEM FUNCTIONING 
 

 Design communication model 

 Temporal stochastic automata 

 Partitioning TMAG (temporal multiple activity 

graph) 

 Parallel activity detection 

 Performance evolution 
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Design communication model: 

Our System implemented PASS in Java. As the 

implementation required balancing fast network 

communication and simplicity of use. When we were 

assessing the performance of the system by varying the 

number of compute nodes. First randomly creates a 

user specified number of vertices and then randomly 

generates outgoing edges based on a Gaussian 

distribution. Temporal activity graphs assume a 

temporal progression from a start node to an end node, 

that is, all paths through the graph have a temporal 

ordering. 
Temporal stochastic autometa: 

Hidden Markov Models and Dynamic 

Bayesian Networks have been used extensively for 

representing activities. A slight variant of these 

methods, stochastic automata, was used to represent 

activities in and subsequently, a slight extension called 

Temporal Stochastic Automata was introduced 

showing that multiple stochastic automata can be 

merged together to recognize activities. This section 

does not contain new material instead it recapitulates 

definitions first provided in.  

A time span distribution specifies such 

transition probabilities, which may vary over time. In 

the following definition, a time interval is a closed 

interval of the set T of time points, which in turn can be 

assumed to be non-negative integers. 
Partitioning TMAG (temporal multiple activity 
graph) 

Two phenomena occur:  

1) There may be thousands of known normal 

activities and as a consequence, TMAGs can be quite 

large, consisting of tens of thousands of vertices and 

hundreds of thousands of edges; 

2) The number of observations made per 

second is very high, consisting of hundreds of 

thousands of observations per second. In this paper we 

propose techniques that exploit a cluster of (C+1) 

compute nodes by partitioning the set of vertices of a 

given TMAG G into C components so that each 

component can be separately processed by a different 

compute node. The additional compute node is used as 

a submit node. After building a partition P = {P1, . . . , 

PC} of G, node N(Pi) will thus handle all tuples f such 

that f .obs € Pi. We assume that each compute node 

includes an implementation of a sequential activity 

detection algorithm such as. Our framework is capable 

of working with any sequential activity detection 

algorithm within a node as long as the “inter-node” 

communications and handoffs are handled properly. In 

Section 4 we will discuss how this occurs in our system, 

where we employ our PASS Detect algorithm. 

 
Fig 2. Partitioning times vs. TMAG size for 

different partitioning schemes and TMAG densities 

(sparse-S, dense-D), averaged over number of compute 

nodes. 

 
Parallel activity detection: 

When we have (C + 1) cluster compute nodes 

available in a cluster for activity detection, PASS uses 

one of those compute nodes as a submit node and the 

other C compute nodes each store the component Pi of 

a partition P = {P1, . . . , PC} of the TMAG G associated 

with a given set A of activities. Each compute node 

N(Pi) stores the restriction of G to the vertices in the 

component Pi, denoted G(Pi). Moreover, each compute 

node stores information about the set of frontier 

vertices w.r.t. Pi. A frontier vertex w.r.t. Pi is a vertex vj 

∈ Pj with i _= j such that there exists a vertex vi ∈ Pi 

such that either (vi, vj) or (vj, vi) is an edge in the 

TMAG. When vj is a frontier node w.r.t. Pi, N(Pi) also 

stores the location of N(Pj). This way, during activity 

detection, if vj is observed, then a smooth handoff can 

be made to compute node N(Pj). 
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Performance Evolution: 

The performance of our partitioning schemes 

in terms of time to compute the partitions when 

varying TMAG sizes and number of compute nodes. 

OPP performs best in the majority of cases, with a 

performance gain that increases with larger TMAGs. 

On the other hand, it appears to suffer more than MOP 

and TIP4 from the density of large TMAGs. All 

partitioning schemes scaled well with the size of the 

input TMAGs, and their performance is almost 

independent of the number of partition size. 

 

 
Fig 3.Partitioning times vs. numbers of 

compute nodes for different partitioning schemes, 

averaged over TMAG size and density. 

 

5. CONCLUSION  
 

 

 

In this paper we investigate on set of activities 

presented via temporal stochastic automata, partitions 

of activities based on level based events, and also 

review the PASS architecture with various 

implementation parts with that coordinates 

computations across nodes in the cluster and also 

shown that this algorithms enables to handle both large 

numbers of observations per second as well as large 

merged graphs. 
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