

© 2015, IJCERT All Rights Reserved Page | 785

 International Journal of Computer Engineering In Research Trends

Volume 2, Issue 11, November-2015, pp. 785-790 ISSN (O): 2349-7084

Study on PASS: A Parallel Activity-Search

System
1
MADIPADIGA VENKATESH, 2

V

.RAMESH

1M.Tech (CS), Department of Computer Science & Engineering,
2Assistant Professor, Department of Computer Science & Engineering,

Sri Indu Institute of Engineering and Technology, R.R Dist Telengana, India.

Abstract: - In this paper we investigate on set of activities presented via temporal stochastic automata,

partitions of activities based on level based events, in this connection our investigation on issues with activity creations
on temporal multi-activity graph in order to address this issues as our proposed system how system used PASS
architecture with various implementation parts with that coordinates computations across nodes in the cluster and also
shown that this algorithms enables to handle both large numbers of observations per second as well as large merged
graphs. And also shown Partitioning times vs. TMAG size for different partitioning schemes and TMAG densities (sparse-
S, dense-D), averaged over number of compute nodes.

Keywords: Activity detection, temporal stochastic automata, parallel computation.

 ——————————  ——————————

1. INTRODUCTION

 In this paper, Given a set A of activities expressed via

temporal stochastic automata, and a set O of

observations (detections of low level events), Hidden

Markov Models and Dynamic Bayesian Networks have

been used extensively for representing activities [4]–[7].

A slight variant of these methods, stochastic automata,

was used to represent activities in [3] and subsequently,

a slight extension called Temporal Stochastic Automata

was introduced [2], [8] showing that multiple stochastic

automata can be merged together to recognize

activities. We study the problem of identifying

instances of activities from A in O. While past work has

developed algorithms to solve this problem, in this

paper, we develop methods to significantly scale these

algorithms. Our PASS architecture consists of three

parts: (i) leveraging past work to represent all activities

in A via a single “merged” graph, (ii) partitioning the

graph into a set of C sub graphs, where (C + 1) is the

number of compute nodes in a cluster, and (iii)

developing a parallel activity detection algorithm that

uses a different compute node in the cluster to

intensively process each sub graph. We propose three

possible partitioning methods and a parallel activity-

search detection (PASS Detect) algorithm that

coordinates computations across nodes in the cluster.

We report on experiments showing that our algorithms

enable us to handle both large numbers of observations

per second as well as large merged graphs. In

particular, on a cluster with 9 compute nodes, PASS can

reliably handle between 400K and 569K observations

per second and merged graphs with as many as 50K

vertices.

2. RELATED GROUND WORK

Hidden Markov Models (HMMs) and their variants

have been used extensively in the past to model

activities. Duong et al. [5] introduce the Switching

Hidden Semi-Markov Model, a two-layered extension

Available online at: www.ijcert.org

 Venkatesh et al., International Journal of Computer Engineering In Research Trends
Volume 2, Issue 11, November-2015, pp. 785-790

© 2015, IJCERT All Rights Reserved Page | 786

of the Hidden Semi-Markov Model (HSMM). The

bottom layer represents atomic events and their

duration using HSMMs, while the top layer represents

high-level activities in terms of atomic events. A survey

of temporal concepts and data models used in

unsupervised pattern mining from symbolic temporal

data is presented in [14]. Automatic learning of

transition probabilities in activity models is discussed

in [15]. Finally, dynamic Bayesian networks [7] and

Petri nets can also be used for tracking multi-agent

activities. A probabilistic extension of Petri nets for

activity detection is proposed in [16]. Context free

grammars have also been used to define activities [17].

HMMs and their variants are the models more closely

related to the temporal stochastic automata used in this

paper, but our performance results significantly

improve upon past work. Limitations of traditional

database management systems in supporting

streaming applications and event processing have

prompted extensive research in Data Stream

Management Systems (DSMS). An early yet

comprehensive survey of relevant issues in data stream

management was presented in [18]. Amongst the

several systems resulting from research efforts in this

direction, of particular relevance is TelegraphCQ [19], a

streaming query processor that filters, categorizes, and

aggregates flow records according to one or more CQL

[20] continuous queries, generating periodic reports.

Differently from traditional queries on static data

collections, results of continuous queries on streaming

data need to be periodically and incrementally updated

as new data is received. A significant portion of

research in this area has been devoted to optimization

of continuous queries [21]. Other works target the

recognition of events based on streams of possibly

uncertain data [22]. Although the system we propose in

this paper operates on streams of observation data, the

scope of our work is drastically different from the

scope of DSMSs. In fact, we are not interested in

retrieving a set of data items satisfying (exactly) certain

conditions and keeping this set up to date as new data

items are received. Instead, we are interested in finding

sets of records such that, with a probability above a

given threshold, the records in each set together

constitute the “evidence” that a given activity occurred

in a specific time interval. Additionally, we want to

track partially completed activity occurrences. To the

best of our knowledge, DSMSs do not provide support

for this type of probabilistic inference. Moreover, there

has been limited work on efficient indexing to support

probabilistic activity recognition. The aim of past work

on indexing of activities was specialized to very

specific activities as opposed to the very general

temporal stochastic automaton based approach that we

build on top of in this paper. For instance, Ben-Arie et

al. [23] use multidimensional index structures to store

body pose vectors in video frames. Kerkez [24]

develops indexes for casebased plan recognition where

knowledge about planning situations enables the

recognizer to focus on a subset of the plan library

containing relevant past plans. A two-level indexing

scheme, along with incremental construction of the

plan libraries, is proposed to reduce the retrieval efforts

of the recognizer. In short, past work does not address

the issue of indexing observations to find activity

instances, and these indexing approaches do not

account for uncertainty in what defines an activity.

Most importantly, none of them is targeted to

distributed scenarios when multiple compute machines

are available over a network.

3. SYSTEM STUDY:

3.1. Presented System:
In this paper, we address the difficulty of scalable

identifying instances of known activities (i.e., where

activity models are known to the application

developers such as in the cases listed above) in a high

throughput stream of observations. We assume that

activities are expressed as temporal stochastic (TS)

automata, following the framework of [2] and its

predecessor [3]. In particular, [2] took a set of known

activity models expressed as temporal stochastic

automata and merged them into a single graph and

then proposed an algorithm to track activities in

observation streams consisting of up to 28.5K

observations per second on merged graphs consisting

of fewer than 1000 vertices.

Real time applications::

1. Fraud in call data records

2. Online market place looks for fraudulent transaction

in web transactions logs

3. Future situations of brokerage house

Pitfalls of Presented system:

1. It does not detect all fraud transactions

efficiently.

2. Its provide the reliable solution

3.2. Proposed System:

In order to achieve this, in our PASS system we adopt a

three-pronged approach illustrated in. We assume that

 Venkatesh et al., International Journal of Computer Engineering In Research Trends
Volume 2, Issue 11, November-2015, pp. 785-790

© 2015, IJCERT All Rights Reserved Page | 787

we start with an initially given set A of activities

expressed as temporal stochastic automata.

Step1: In the very first step, shown in Fig. 1 with a 1 in

a circle, we merge all of the activities in A into a single

temporal multi-activity graph (TMAG). A TMAG

captures all states and transitions present in any of the

activities in A. TMAGs were first proposed in [2] which

showed that merging graphs allowed multiple

automata to be processed efficiently.

Step2: PASS implements activity detection on a

compute cluster consisting of (C + 1) compute nodes or

processors. What we try to do in the second step,

shown in Fig. 1 with a 2 in a circle, is to partition the

TMAG into C sub graphs. The idea is that one

processor is used as a submit node and the remaining

C processors are each assigned one of the sub graphs

generated by partitioning. Splitting the TMAG allows

us to scale the number of activities we can process as

well as improves our processing time by using a

compute cluster. Each component of the TMAG

resulting from the split can be processed on an

individual compute node in the cluster. We present

three ways to partition a TMAG. The Minimal Overlap

Partitioning (MOP) algorithm splits the TMAG by

assigning to each vertex a “temporal extent”.

Intuitively, the temporal extent captures the period of

time when the vertex can be active after the start of any

activity in which that vertex is present. The intuition

underlying minimal overlap partitioning is that if two

vertices in a TMAG have similar temporal extents, then

we should assign them to the same compute node. The

Temporal Incidence Partitioning (TIP) method

associates an “incidence” measure with any time

interval. This incidence measure intuitively measures

the number of vertices that can be active within a time

interval. Some vertices, for instance, may occur at

different time slices in different activities and as such,

may have very wide time intervals. However, even

with a very large temporal extent, the vertex may only

be active infrequently within that temporal extent. TIP

tries to split TMAGs by minimizing the standard

deviation of these incidence measures. The Occurrence

Probability Partitioning (OPP) algorithm transforms

the TMAG into a weighted graph where the weights

are learned by looking at actual observation

(automaton state) streams to understand the true

probability that one observation is seen after another

observation. The idea is that if two observations occur

consecutively very often within the real stream of

observations being monitored, then these two

observations often need to be processed very shortly

after one another and hence, the corresponding two

TMAG vertices should stay on the same compute node.

OPP therefore weights edges in the TMAG using these

co-occurrence probabilities and then partitions the

TMAG using edge cuts after pruning away edges with

very low weights.

Step 3: once the set A of activities we wish to detect are

merged together into a TMAG and the resulting TMAG

is partitioned across C different compute nodes, we are

ready to process an observation stream and identify

instances of the activities in A in the observation

stream. To achieve this requires the core run-time

component of the PASS system, shown in Step 3 (circle

with a 3 embedded in it) in Fig. 1. The Activity-Search

Engine automatically processes the observation stream

using a decentralized algorithm that allows multiple

nodes to concurrently process different portions of the

observation stream with seamless handoffs occurring

as needed from one compute node to another.

Advantages:

 Detect the frauds in different number of

applications

 Reliable detection of all number frauds

 Quick detection is also possible here using the

parallel activity search system

 SYSTEM ARCHITECTURE:

Fig 1. PASS architecture

4.1. PASS SYSTEM FUNCTIONING

 Design communication model

 Temporal stochastic automata

 Partitioning TMAG (temporal multiple activity

graph)

 Parallel activity detection

 Performance evolution

 Venkatesh et al., International Journal of Computer Engineering In Research Trends
Volume 2, Issue 11, November-2015, pp. 785-790

© 2015, IJCERT All Rights Reserved Page | 788

Design communication model:

Our System implemented PASS in Java. As the

implementation required balancing fast network

communication and simplicity of use. When we were

assessing the performance of the system by varying the

number of compute nodes. First randomly creates a

user specified number of vertices and then randomly

generates outgoing edges based on a Gaussian

distribution. Temporal activity graphs assume a

temporal progression from a start node to an end node,

that is, all paths through the graph have a temporal

ordering.
Temporal stochastic autometa:

Hidden Markov Models and Dynamic

Bayesian Networks have been used extensively for

representing activities. A slight variant of these

methods, stochastic automata, was used to represent

activities in and subsequently, a slight extension called

Temporal Stochastic Automata was introduced

showing that multiple stochastic automata can be

merged together to recognize activities. This section

does not contain new material instead it recapitulates

definitions first provided in.

A time span distribution specifies such

transition probabilities, which may vary over time. In

the following definition, a time interval is a closed

interval of the set T of time points, which in turn can be

assumed to be non-negative integers.
Partitioning TMAG (temporal multiple activity
graph)

Two phenomena occur:

1) There may be thousands of known normal

activities and as a consequence, TMAGs can be quite

large, consisting of tens of thousands of vertices and

hundreds of thousands of edges;

2) The number of observations made per

second is very high, consisting of hundreds of

thousands of observations per second. In this paper we

propose techniques that exploit a cluster of (C+1)

compute nodes by partitioning the set of vertices of a

given TMAG G into C components so that each

component can be separately processed by a different

compute node. The additional compute node is used as

a submit node. After building a partition P = {P1, . . . ,

PC} of G, node N(Pi) will thus handle all tuples f such

that f .obs € Pi. We assume that each compute node

includes an implementation of a sequential activity

detection algorithm such as. Our framework is capable

of working with any sequential activity detection

algorithm within a node as long as the “inter-node”

communications and handoffs are handled properly. In

Section 4 we will discuss how this occurs in our system,

where we employ our PASS Detect algorithm.

Fig 2. Partitioning times vs. TMAG size for

different partitioning schemes and TMAG densities

(sparse-S, dense-D), averaged over number of compute

nodes.

Parallel activity detection:

When we have (C + 1) cluster compute nodes

available in a cluster for activity detection, PASS uses

one of those compute nodes as a submit node and the

other C compute nodes each store the component Pi of

a partition P = {P1, . . . , PC} of the TMAG G associated

with a given set A of activities. Each compute node

N(Pi) stores the restriction of G to the vertices in the

component Pi, denoted G(Pi). Moreover, each compute

node stores information about the set of frontier

vertices w.r.t. Pi. A frontier vertex w.r.t. Pi is a vertex vj

∈ Pj with i _= j such that there exists a vertex vi ∈ Pi

such that either (vi, vj) or (vj, vi) is an edge in the

TMAG. When vj is a frontier node w.r.t. Pi, N(Pi) also

stores the location of N(Pj). This way, during activity

detection, if vj is observed, then a smooth handoff can

be made to compute node N(Pj).

 Venkatesh et al., International Journal of Computer Engineering In Research Trends
Volume 2, Issue 11, November-2015, pp. 785-790

© 2015, IJCERT All Rights Reserved Page | 789

Performance Evolution:

The performance of our partitioning schemes

in terms of time to compute the partitions when

varying TMAG sizes and number of compute nodes.

OPP performs best in the majority of cases, with a

performance gain that increases with larger TMAGs.

On the other hand, it appears to suffer more than MOP

and TIP4 from the density of large TMAGs. All

partitioning schemes scaled well with the size of the

input TMAGs, and their performance is almost

independent of the number of partition size.

Fig 3.Partitioning times vs. numbers of

compute nodes for different partitioning schemes,

averaged over TMAG size and density.

5. CONCLUSION

In this paper we investigate on set of activities

presented via temporal stochastic automata, partitions

of activities based on level based events, and also

review the PASS architecture with various

implementation parts with that coordinates

computations across nodes in the cluster and also

shown that this algorithms enables to handle both large

numbers of observations per second as well as large

merged graphs.

REFERENCES:

[1] M. Albanese, V. Moscato, A. Picariello, V. S.

Subrahmanian, and O. Udrea, “Detecting stochastically

scheduled activities in video,” in Proc. IJCAI, M. M.

Veloso, Ed. San Francisco, CA, USA, 2007, pp. 1802–

1807.

[2] S. Lühr, H. H. Bui, S. Venkatesh, and G. A. W. West,

“Recognition of human activity through hierarchical

stochastic learning,” in Proc. PerCom., Fort Worth, TX,

USA, Mar. 2003, pp. 416–422.

[3] T. Duong, H. Bui, D. Phung, and S. Venkatesh,

“Activity recognition and abnormality detection with

the switching hidden semi-Markov model,” in Proc.

IEEE CVPR, Washington, DC, USA, 2005.

[4] T. V. Duong, D. Q. Phung, H. H. Bui, and S.

Venkatesh, “Efficient duration and hierarchical

modeling for human activity recognition,” Artif. Intell.,

vol. 173, no. 7–8, pp. 830–856, May 2009.

[5] R. Hamid, Y. Huang, and I. Essa, “ARGMode

activity recognition using graphical models,” in Proc.

IEEE CVPR, Madison, WI, USA, 2003.

 Venkatesh et al., International Journal of Computer Engineering In Research Trends
Volume 2, Issue 11, November-2015, pp. 785-790

© 2015, IJCERT All Rights Reserved Page | 790

[6] M. Albanese, S. Jajodia, A. Pugliese, and V. S.

Subrahmanian, “Scalable analysis of attack scenarios,”

in Proc. ESORICS, Leuven, Belgium, 2011, pp. 416–433.

[7] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps

and their uses in improved network optimization

algorithms,” in Proc. FOCS, 1984, pp. 338–346.

[8] G. Palshikar and M. Apte, “Collusion set
detection using graph clustering,” Data Knowl. Eng.,
vol. 16, no. 1, pp. 135–164, 2008.

[9] M. Albanese, A. Pugliese, and V. S.
Subrahmanian, “Fast activity detection: Indexing for
temporal stochastic automaton-based activity
models,” IEEE Trans. Knowl. Data Eng., vol. 25, no.
2, pp. 360–373, Feb. 2013.

