Selection and Maintenance of Materialized View using Genetic Algorithm

Ramesh S Gawali¹, Prof. Mrunali G. Vaidya²

¹,² BIT Ballarpur Gondwana University

E-mail: gawaliramesh573@gmail.com

Abstract: Data warehouse is a repository of large amount of data collected from multiple heterogeneous and distributed data sources. Quick response time and accuracy are the key points for success of any database. Performance of query can be improved by different approaches like query optimization, use of proper data structure etc. But leaving all these alternatives we are planning to use materialized view approach

Keywords: data warehouse, materialized view, optimization query.

1. INTRODUCTION

Data warehouse the huge storage of information. The information can be collected from various sources. Those sources may be in the form of autonomous or distributive. The primarily goal to achieve the execution is less for processing the query. To avoid accessing the original data sources and increase the efficiency of the queries fired on data warehouse, some results in the query processing are stored in data warehouse. These results in data warehouse are known as materialized view. On abstract level data warehouse can be seen as collection of materialized view for quick access of data.

2. LITERATURE SURVEY

Many researches are working to improve the performance of query. Some the work is illustrated as follows.

Dr. T.Nalini et al. [1] proposes an IM-LXI index for incremental maintenance of materialized view selection of materialized views so that query evaluation costs can be optimized as well as view maintenance and view storage was addressed in this piece of work

Ashadevi, B and Balasubramanian [2] proposed framework for selecting views to materialize which takes in to account all the cost metrics associated with the materialized views selection, including query processing frequencies, base relation, update frequencies, query access costs, view maintenance costs and the system’s storage space constraints and then selects the most cost effective views to materialize and thus optimizes the maintenance storage, and query processing cost. This piece of work also addressed the preservation of existing materialized view.

Himanshu Gupta and Inderpal SinghMumick [3] developed a greedy algorithm to minimize the maintenance cost and storage constraint in the selection of materialized views for data warehouse. In this paper view selection under disk space & maintenance cost constraints are addressed.

Yang, J et al.[4] proposed a heuristics algorithm based on individual optimum query plans. Framework is based on specification of multiple views processing plan (MVPP), which is used to present the problem formally.
Harinarayan et al. [5] proposed a greedy algorithm for the materialized views selection so that query evaluation costs can be optimized in the special case of “data cubes”. This paper provides good trade-offs between the space used and the average time to answer query. Here, the costs for view maintenance and storage were not addressed in this piece of work.

Amit Shukla et al. [6] proposed a very simple and fast heuristic algorithm, PBS, to select aggregates for pre-computation. PBS algorithm runs faster than BPUS, and is fast enough to make the exploration of the time-space trade-off feasible during system configuration.

Y.D.Choudhari et al.[7] proposed a novel CBFSMV algorithm is proposed for selection of materialized view using query clustering strategy that reduces the execution time as compared to response time for actual database.

A greedy algorithm is used to incorporate the maintenance cost and storage constraint in the selection of data warehouse Materialized View. It reduces complexity

3. PROPOSED SYSTEM

The architecture of proposed system is shown in figure.1 Data sources of information are distributed .When query is fired by user the data is search in materialized view first. This materialized view contains the result of queries which are fired frequently by the user. Thus, the time of visiting the original base table gets saved and we get the response of query earlier as compared to conventional way of query processing.

Fig 1. Proposed System Architecture

4. IMPLEMENTATION FRAMEWORK

After studying different research paper and different algorithms to select Materialized view by keeping in mind to acheive the goal to enhance the work performance of query in database warehouse using MV. We have decided into foure modules

a) Creation of datawarehouse
b) Serching of data without using MV
c) Materialized view creation
d) Search record in perfomance of MV.

a) Creation of datawarehouse

The template is designed so that author affiliations are not repeated each time for multiple authors of the same affiliation. Please keep your affiliations as succinct as possible (for example, do not differentiate among departments of the same organization). This template was designed for two affiliations.

b) Serching of data without using MV

We fire the queries on data warehouse and record the time needed to search the record based on attribute.

c) Materialized view creation

In this phase MV is created by firing the queries .Each of search query is added in .txt file as per that MV is created. The size of MV depends on what type of database is used. It works like cache memory

d) Search record in performance of MV.

User fires the query. If data is available in MV user does not visit the base table if miss occurs then record is search in original data source. The time required to search the data using MV get reduced as visiting to base table is avoided.

5. EXPECTED RESULT

As per the work we expect the following result when we execute query with MV and without MV the graph is plotted query versus time needed to execute that query.
Fig 2. Query performance graph DA versus MV
When the query is fired on database without implementation of MV it takes more time as compared to the time required to fetch the record when we implement the MV.

6. CONCLUSION
The implementation of materialized reduces the access time required to get the data from database. The use of materialized view increases the performance of system approximately 10-12%. Implementation of materialized view is one of the options to improve the performance of database.

REFERENCES
[1] Dr. T. Nalini, Dr. A. Kumaravel, Dr. K. Rangarajan, “A Novel Algorithm with IM-LSI Index For Incremental Maintenance of Materialized View” JCS&T Vol. 12 No. 1 April 2012