INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING IN RESEARCH TRENDS VOLUME 2, ISSUE 9, SEPTEMBER 2015, PP 575-579 # Anonymous Authentication for Decentralized Access Control of Cloud Data ¹ Vankam Anil Madhava, ² K.Lakshmi, ³Dr.S.Prem Kumar ¹ (M.Tech), CSE ²Assistant Professor, Department of Computer Science and Engineering ³Professor & HOD, Department of computer science and engineering, G.Pullaiah College of Engineering and Technology, Kurnool, Andhra Pradesh, India. Abstract — The revolutionary decentralized access control plan for vulnerable information data storage in clouds that backings unidentified confirmation. In the proposed plan, the clouds check the server's credibility without knowing the client's uniqueness before putting away information. The proposed configuration concentrates on the full cycle access controlling plan where in the displayed framework it was precluded. With a specific end goal to accomplish secure access controlling plan we proposed fine-gained approach at cloud level, it keeps unapproved access controlling from clients or foes viably our validation and access control plan is decentralized and solid, not at all like different access control plans intended for clouds which are incorporated. The correspondence, calculation overheads are like brought together approaches. More over our proposed outline demonstrates that our framework has secure crypto instrument towards accomplishing information uprightness and security. Keywords: Decentralized access Controlling, Fine-grained Approach, Anonymous Authentication. ----- **♦** ----- #### 1 Introduction Presently days cloud computing is a normally created innovation to store information from more than one customer. Cloud computing is a situation that empowers clients to remotely information administration. They can chronicle their information reinforcements remotely to outsider cloud stockpiling suppliers as opposed to keep up server farms all alone. An individual or an association may not oblige obtaining the required stockpiling gadgets. In spite of they can store their information reinforcements to the cloud and document their information to stay away from any data misfortune if there should be an occurrence of equipment/programming disappointments. Indeed, even cloud stockpiling is more adaptable, how the security and protection are accessible for the outsourced information turns into a genuine concern. There are three targets to be principle issue Confidentiality – while out sourcing the data from data owner to cloud server, system need to be provide confidentiality without revealing owner details like identity and out sourcing content to third party users. **Integrity** – out sourced data need to be protected from adversaries (i.e data modifications). **Availability** - Data need to be ensuring timely and reli- able access to and use of information. Recently, Sushmita ruj [1] addressed Anonymous Authentication [1] for data storing to clouds. Anonymous authentication is the process of validating the user without the details or attributes of the user. So the cloud server doesn't know the details or identity of the user, which provides privacy to the users to hide their details from other users of that cloud. Security and privacy protection in clouds are examined and experimented by many researchers. Wang et al. [16] provides storage security using Reed-Solomon erasure correcting codes. Using Homomorphic encryption, [17] the cloud receives cipher text and returns the encoded value of the result. The user is able to decode the result, but the cloud does not know what data it has operated on. Time-based file assured deletion, which is first introduced in [5], means that files can be securely deleted and remain permanently inaccessible after a predefined duration. Recently, Sushmita ruj [1] tended to Unknown Verification [1] for information putting away to cloud storage. Anonymous verification is the procedure of approving the client without the points of interest or properties of the client. So the cloud server doesn't know the points of interest or identity of the client, which gives security to the clients to conceal their subtle elements from different clients of that cloud. Security and privacy protection in ## INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING IN RESEARCH TRENDS VOLUME 2, ISSUE 9, SEPTEMBER 2015, PP 575-579 clouds are inspected and tested by numerous scientists. Wang et al. [16] gives capacity security utilizing Reed-Solomon erasure correcting codes. Utilizing Homomorphic encryption, [17] the cloud gets figure message and returns the encoded estimation of the outcome. The client has the capacity disentangle the outcome; however the cloud does not recognize what information it has worked on. Time-based record guaranteed erasure, which is initially presented in [5], implies that documents can be safely erased and remain for all time un-Security and privacy protection in clouds are being explored by many researchers. In paper [2], Wang addressed storage security using Reed-Solomon erasurecorrecting codes. Authentication of users using public key cryptographic techniques has been studied in [3]. Many homomorphic encryption techniques have been suggested [4], [5] to ensure that the cloud is not able to read the data while performing computations on them. Using homomorphic encryption, the cloud receives ciphertext of the data and performs computations on the ciphertext and returns the encoded value of the result. The user is able to decode the result, but the cloud does not know what data it has operated on. In such circumstances, it must be possible for the user to verify that the cloud returns correct results. Author Wang, in paper [2] addressed secure and dependable cloud storage. Cloud servers prone to Byzantine failure, where a storage server can fail in arbitrary ways [2]. The cloud is also prone to data modification and server colluding attacks. In server colluding attack, the adversary can compromise storage servers, so that it can modify data files as long as they are internally consistent. To provide secure data storage, the data needs to be encrypted. However, the data is often modified and this dynamic property needs to be taken into account while designing efficient secure storage techniques. In paper available after a predefined Length of Time. #### **II.RELATED WORK** Existing work on access control in cloud are centralized in nature [6], [7], [8], [9], [10], [12], [18]. Except [18] and [12], all other schemes use ABE. The scheme in [18] uses a symmetric key approach and does not support authentication. The schemes [6], [7], [10] do not support authentication as well. [9], Zhao provides privacy preserving authenticated access control in cloud. However, the authors take a centralized approach where a single key distribution center (KDC) distributes secret keys and attributes to all users Unfortunately, a single KDC is not only a single point of failure but difficult to maintain because of the large number of users that are supported in a cloud environment. Thus, emphasis should be given on that clouds should take a decentralized approach while distributing secret keys and attributes to users. In paper [17], Yang proposed a decentralized approach; their technique does not authenticate users, who want to remain anonymous while accessing the cloud. In an another paper [10], Ruj proposed a distributed access control mechanism in clouds. However, the scheme did not provide user authentication. The other drawback was that a user can create and store a file and other users can only read the file. Write access was not permitted to users other than the creator. In the proposed system, a decentralized architecture is proposed meaning that there can be several KDCs for key management. The main aim of paper is to design a scheme for distributed access control of data stored in cloud so that only authorized users with valid attributes can access them. #### III. PRESENTED WORK In our presented work entire operation i.e. read or write was preformed among centralized in nature here it uses AES Scheme which works as single key (same key)manner it seems less security high performance comparatively it's a little faster than asymmetric scheme. While uploading data in cloud servers, owner takes a **Key management:** with our Presented System Key management is a challenging issue where sharing and storing keys in order to provide the data security. **Authentication:** here with our presented system there is no proper access controlling scheme performed while out sourcing the data from data owner to Cloud Server or from Cloud Server to end users while data accessing due to performing by Coarse grained approach. ### **Key Distribution Center:** Here KDC emphasize that clouds should take a centra- centralized method where single KDC (Key Distribution Center) allocates keys and access controlling attributes which are distributed among the users when there is huge no of request from more users at same time, there may be chances to crash the server or server may go down, more over key management among multi users through single KDC is one of the challenging issue. lized method while allocating secret keys among the users. It is somewhat difficult for clouds to have a single KDC to issues keys for different locations in the world. The architecture is centralized; meaning that there can be single KDCs for key management in this regards system performance is very poor due to limited handling capacity. **Data integrity:** When the system is failure in providing data confidentiality and security due to weak cryptosystem then became to loosing data integrity, so here lack of data integrity due above reasons. #### IV.WORKING MODEL OF PROPOSED SYSTEM Fig 2. Praposed System Architecture Fine-grained Access Control. Fine-grained access control systems facilitate granting differential access rights to a set of users and allow exibility in specifying the access rights of individual users. Several techniques are known for implementing fine grained access control. In order to address the above issues, our proposed system performs a secure data transaction in the cloud; the suitable cryptographic method is used .i.e. RSA algorithm. The owner must encrypt the file with some specified attributes, with owner's private key which was generated by the KDC operated by the Trustee. **Setup Phase:** in this phase data owner can obtain Private Key from KDC ,get his public key and get Time interval tag from Time server for data availability and collect all this things as attribute set and apply RSA algorithm to encrypt the data be out sourcing to Cloud server. **Encrypt:** in this phase data will encrypted along with attribute set, which consist of E(M,Pk,T,Puk)→RSA→CT, where M: Message,Pk: Private Key which is generated by KDC,T: Time Interval ,Puk: Public Key **Decrypt:** in this phase data will be decrypted along with Attribute set, which consist of D(CT)→RSA→M,Pk,T,Puk.. Before to outsource the data into cloud server data owner append a time interval tag which was issued by the time server which will be used as a time stamp. Finally Owner can upload encrypted data into cloud server with Time intervals. If a third person want to access that file remotely from cloud server, user need be authorized by the cloud server i.e. here fine grained approach will be performed at cloud level soon after authorized by cloud server, cloud server send encrypted content to user, now user need get Decrypted keys that is Private key and Public Key by the Trustee it will done based on user Identity. Users may view the record if the user had the key which is used to decrypt the encrypted file [6]. Sometimes this may be a failure due to the technology development and the hackers. The key distribution center is a server that is responsible for cryptographic key management. The public key is time-based, it means if key will be deleted or removed by the key manager when an expiration time is reached, where the expiration time is specified when the file is first declared or uploaded. Without the public key, the private key and hence the data file remain encrypted and are deemed to be inaccessible. Thus, the main security property of file assured deletion is that even if a cloud provider does ## INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING IN RESEARCH TRENDS VOLUME 2, ISSUE 9, SEPTEMBER 2015, PP 575-579 not remove expired file copies from its storage, those files remain encrypted and unrecoverable[6]. We propose a policy based file access [6] and policy based file assured deletion [6], [7], [8] for better access to the files and delete the files which are decided no more. Our system also has the added feature of fine grained access control in which only valid users are able to decrypt the loading information. The system prevents replay attacks and supports creation, modification, and reading data collected in the cloud. #### ADVANTAGES: Distributed access control of data collected in cloud so that only certified users with fully valid attributes can read them. The confirmation of users who collection and modify their data on the cloud. The identity of the user is secure from the cloud during confirmation. #### **V.CONCLUSION:** In this paper we demonstrate our proposed framework has the included component of fine grained access control in which just substantial clients have the capacity to decode the stacking data among decentralized framework. The framework anticipates replay assaults and backings creation, alteration, and perusing information gathered in the cloud. At long last our framework demonstrates that high security, secure validation, better in execution with information trustworthiness. #### REFERENCE: - [1] S Sushmita Ruj, Milos Stojmenovic and Amiya Nayak, "Decentralized Access Control with Anonymous Authentication of Data Stored in Clouds", IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS - [2] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, "Toward Secure and Dependable Storage Services in Cloud Computing," IEEE Trans. Services Computing, Apr.- June 2012. - [3] H. Li, Y. Dai, L. Tian, and H. Yang, "Identity-Based Authentication for Cloud Computing," Proc. First Int'l Conf. Cloud Computing, 2009. - [4] C. Gentry, "A Fully Homomorphic Encryption Scheme," PhD dissertation, Stanford Univ., 2009. - [5] A.-R. Sadeghi, T. Schneider, and M. Winandy, "To-ken-Based Cloud Computing," Proc. Third Int'l Conf. Trust and Trustworthy Computing (TRUST), 2010. - [6] M. Li, S. Yu, K. Ren, and W. Lou, "Securing Personal Health Records in Cloud Computing: Patient-Centric and Fine-Grained Data Access Control in Multi-Owner Settings," Proc. Sixth Int'l ICST Conf. Security and Privacy in Comm. Networks (SecureComm), 2010. - [7] A.Shekinah Prema Sunaina, "Decentralized Fine-Grained Access Control Scheme For Secure Cloud Storage Data." International Journal Of Computer Engi- - neering In Research Trends. Volume 2, Issue 7, July 2015, Pp 421-424, Issn (Online): 2349-7084. www.ijcert.org. - [8] S. Yu, C. Wang, K. Ren, and W. Lou, "Attribute Based Data Sharing with Attribute Revocation," Proc. ACM Symp. Information, Computer and Comm. Security (ASIACCS), 2010. - [9] G. Wang, Q. Liu, and J. Wu, "Hierarchical Attribute-Based Encryption for Fine-Grained Access Control in Cloud Storage Services," Proc. 17th ACM Conf. Computer and Comm. Security (CCS), 2010. - [10] F. Zhao, T. Nishide, and K. Sakurai, "Realizing Fine-Grained and Flexible Access Control to Outsourced Data with Attribute-Based Cryptosystems," Proc. Seventh Int'l Conf. Information Security Practice and Experience (ISPEC), 2011. - [11] S. Ruj, A. Nayak, and I. Stojmenovic, "DACC: Distributed Access Control in Clouds," Proc. IEEE 10th Int'l Conf. Trust, Security and Privacy in Computing and Communications (TrustCom), 2011. - [12] S.SeenuIropia, R.Vijayalakshmi, "Decentralized Access Control Of Data Stored In Clouds Using Key Policy Attribute Based Encryption", International Journal Of Invention In Computer Science And Engineering, 2014. [13] - http://securesoftwaredev.com/2012/08/20/xacml-in-the-cloud, 2013. - [14] R.L. Rivest, A. Shamir, and Y. Tauman, "How to Leak a Secret," Proc. Seventh Int'l Conf. Theory and Application of Cryptology and Information Security (ASIACRYPT), 2001. - [15] X. Boyen, "Mesh Signatures," Proc. 26th Ann. Int'l Conf. Advances in Cryptology (EUROCRYPT), 2007. [16] D. Chaum and E.V. Heyst, "Group Signatures," Proc. Ann. Int'l Conf. Advances in Cryptology (EUROCRYPT), 1991. - [17] H.K. Maji, M. Prabhakaran, and M. Rosulek, "Attribute-Based Signatures: Achieving Attribute-Privacy and Collusion-Resistance," IACR Cryptology ePrint Archive, 2008. - [18] K. Yang, X. Jia, and K. Ren, "DAC-MACS: Effective Data Access Control for Multi-Authority Cloud Storage Systems," IACR Cryptology ePrint Archive, 2012. - [19] W. Wang, Z. Li, R. Owens, and B. Bhargava, "Secure and Efficient Access to Outsourced Data," Proc. ACM Cloud Computing Security Workshop (CCSW), 2009.