Impact Factor:6.549
 Scopus Suggested Journal: Tracking ID for this title suggestion is: 55EC484EE39417F0

International Journal
of Computer Engineering in Research Trends (IJCERT)

Scholarly, Peer-Reviewed, Platinum Open Access and Multidisciplinary




Welcome to IJCERT

International Journal of Computer Engineering in Research Trends. Scholarly, Peer-Reviewed, Platinum Open Access and Multidisciplinary

ISSN(Online):2349-7084                 Submit Paper    Check Paper Status    Conference Proposal

Back to Current Issues

A Supermodularity-Based approach for Data Privacy using Differential Privacy Preserving Algorithm

Alisam Pavan Kumar, U.Veeresh, Dr S.Prem Kumar, ,
Affiliations
(M.Tech), CSE
Assistant Professor, Department of Computer Science and Engineering
Professor & HOD, Department of computer science and engineering, G.Pullaiah College of Engineering and Technology, Kurnool, Andhra Pradesh, India.
:NOT ASSIGNED


Abstract
Now a day the maximizing of data usage and minimizing privacy risk are two conflicting goals. The organization required set of transformation at the time of release data. While determining the best set of transformations has been the focus on the extensive work in the database community, the scalability and privacy are major problems while data transformation. Scalability and privacy risk of data anonymization can be addressed by using differential privacy. Differential privacy provides a theoretical formulation for privacy. A scalable algorithm is use to find the differential privacy when applying specific random sampling. The risk function can be employ through the supermodularity properties.


Citation
Alisam Pavan Kumar,U.Veeresh,Dr S.Prem Kumar."A Supermodularity-Based approach for Data Privacy using Differential Privacy Preserving Algorithm". International Journal of Computer Engineering In Research Trends (IJCERT) ,ISSN:2349-7084 ,Vol.2, Issue 09, SEPTEMBER - 2015, URL :https://ijcert.org/ems/ijcert_papers/V2I921.pdf,


Keywords : Differential privacy, Scalability, privacy, supermodularity, convex optimization

References
[1] Mohamed R. Fouad, Khaled Elbassioni, ―A Supermodularity-Based Differential Privacy Preserving Algorithm for Data Anonymization‖, IEEE transaction on Knowledge and Data Engineering July 2014.
[2] M. R. Fouad, K. Elbassioni, and E. Bertino, ―Towards a differentially private data anonymization,‖ Purdue Univ., West Lafayette, IN, USA, Tech. Rep. CERIAS 2012-1, 2012. 
[3] N. Mohammed, R. Chen, B. C. Fung, and P. S. Yu, ―Differentially prívate data release for data mining,‖ in Proc. 17th ACM SIGKDD,New York,NY, USA, 2011, pp. 493–501. 
[4] M. R. Fouad, G. Lebanon, and E. Bertino, ―ARUBA: A risk-utility based algorithm for data disclosure,‖ in Proc. VLDB Workshop SDM, Auckland, New Zealand, 2008, pp. 32–49. 
[5] K. M. Elbassioni, ―Algorithms for dualization over products of partially ordered sets,‖ SIAM J. Discrete Math., vol. 23, no. 1,pp. 487–510, 2009. 
[6] C. Dwork, ―Differential privacy: A survey of results,‖ in Proc. Int.Conf. TAMC, Xiˇ San, China, 2008, pp. 1–19.
 [7] G. Lebanon, M. Scannapieco, M. R. Fouad, and E. Bertino,―Beyond kanonymity:A decision theoretic framework for assessing Privacy risk,‖ in Privacy in Statistical Databases. Springer LNCS 4302:217U 232, 2006. 
[8] C. Dwork, ―Differential privacy,‖ in Proc. ICALP, Venice, Italy,2006, pp.1–12. 
[9] C. C. Aggarwal, ―On k-anonymity and the curse of dimensionality,‖in Proc. Int. Conf. VLDB, Trondheim, Norway, 2005,pp. 901–909.
[10] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,―Our data, ourselves: Privacy via distributed noise generation,‖in Proc. 25th EUROCRYPT, Berlin, Germany, 2006, pp. 486–503,LNCS 4004. 
11] A. Frieze, R. Kannan, and N. Polson, ―Sampling from log-concave distributions,‖ Ann. Appl. Probab., vol. 4, no. 3, pp. 812–837, 1994. 
[12] B. C. M. Fung, K. Wang, and P. S. Yu, ―Top-down specialization for information and privacy preservation,‖ in Proc. IEEE ICDE, Washington, DC, USA, 2005, pp. 205–216. 
[13] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis, ―Fast data anonymization with low information loss,‖ in Proc. Int. Conf.VLDB, Vienna, Austria, 2007, pp. 758– 769. 
[14] G. A. Gratzer, General Lattice Theory, 2nd ed. Basel, Switzerland:Birkh¨auser, 2003. 
[15] M. Grotschel, L. Lovasz, and A. Schrijver, ―Geometric algorithms and combinatorial optimization,‖ in Algorithms and Combinatorics, vol. 2, 2nd ed. Berlin, Germany: Springer, 1993.
[16] J. Cao, P. Karras, P. Kalnis, and K.-L. Tan, ―SABRE: A sensitive attribute bucketization and redistribution framework for t-closeness,‖ J. VLDB, vol. 20, no. 1, pp. 59–81, 2011. 
[17] C. M. Fung, K. Wang, and P. S. Yu, ―Top-down specialization for information and privacy preservation,‖ in Proc. IEEE ICDE, Washington, DC, USA, 2005, pp. 205–216.


DOI Link : NOT ASSIGNED

Download :
  V2I921.pdf


Refbacks : Currently there are no Refbacks

Support Us


We have kept IJCERT is a free peer-reviewed scientific journal to endorse conservation. We have not put up a paywall to readers, and we do not charge for publishing. But running a monthly journal costs is a lot. While we do have some associates, we still need support to keep the journal flourishing. If our readers help fund it, our future will be more secure.

Quick Links



DOI:10.22362/ijcert


Science Central

Score: 13.30





Submit your paper to editorijcert@gmail.com